基于流固耦合法重力坝地震反应的数值分析

杨军义 何 楠 张艺莹 梁春雨

(工程设计院)

[摘要] 为研究坝体-库水-地基流固耦合的动力效应,以黄登重力坝为例,采用 ANSYS 软件,对流固耦合作用下的重力坝的地震响应进行了分析,计算结果表明:坝体-库水-地基流固耦合模型计算结果随着模拟地基范围的增加,能够更加精确地模拟地震动响应,不过向上游延伸3倍的坝高就能够满足计算精度要求。 [关键词] 流固耦合 重力坝 地震反应 地基尺寸 数值分析

1 引言

随着我国经济和社会的快速发展,我国越来越 重视能源产业结构调整,作为清洁能源和可再生能 源的水电在整个能源产业所占的比重越来越多, 2019 年水电总装机已达 3.52 亿 kW,水电总发电量 已达 1.23 亿 kW · h。我国已建或在建的大型的大 型水利工程中,有多座坝高超过150 m 的重力坝,高 坝大库,且处于强震区,一旦发生事故将引发灾难性 后果,因此十分有必要研究坝体-地基-库水整个系 统的地震响应。於文欢等[1]采用流固耦合法研究 了刚性地基和弹性地基模型中坝体上游面动水压力 和地震动位移的变化。陈江,张少杰等^[2]通过对重 力坝和库水的流固耦合分析,研究了库底吸收系数 对坝体耦合系统动力响应的分析。龚亚琦,苏海东 等[3]基于流固耦合方法,分别采用势流模式和位移 模式2中位移单元模拟库水,研究了动力作用下,可 压缩库水对重力坝动力响应的影响。刘浩吾^[4]通 过对3座拱坝现场迫振试验的理论分析,论证了库 水可压缩性对动水压力的放大效应,并给予波的传 播理论提出了水库边界反射吸收参数的算法。基于 重要水利工程抗震安全的重要性,学者们开始寻找 能更全面考虑库水-坝体间相互作用的方法模 型^[5-9]。本文尝试讨论不同地基尺寸下,库水可压 缩性对动水压力的影响有多大,坝体-库水-地基相 互作下,坝体的动力响应的变化情况。

2 基本原理

一般情况下,坝体-库水-地基耦合系统如图 1 所示^[10],假设库水满足以下条件①库水震动过程中 无旋涡,无粘性和热量交换;②库水均质,可以压缩 且可以压缩。采用有限元方法离散后,坝体-库水-地基动力系统的中库水的动力平衡方程为:

 $M_{p}P^{e}+C_{p}P^{e}+K_{p}P^{e}+\rho R_{p}\ddot{u}=0$ (1) 式中: M_{p} 、 C_{p} 、 K_{p} 分别为库水的质量矩阵、阻尼矩阵 和刚度矩阵; P^{e} 和 P^{e} 分别为动水压力的二阶、一阶 导数; R_{p} 为库水与坝体交界面上的耦合矩阵; P^{e} 为 节点压力向量; \ddot{u} 为节点的加速度; ρ 为库水密度。

坝体结构的动力平衡方程为:

 $M_{d}\ddot{u} + C_{d}\dot{u} + K_{d}u - (R_{p})^{T}P^{e} = f$ (2) 式中: M_{d} 、 C_{d} 和 K_{d} 分别为坝体的质量矩阵、阻尼矩 阵和刚度矩阵;u为坝体节点位移; \dot{u} 为坝体节点速 度; \ddot{u} 为坝体节点加速度;f为坝体 - 库水交接部位 外界激励。

由式(1)和式(2)可得坝体-库水相互作用的流 固耦合方程:

$$\begin{bmatrix} M_{d} & 0\\ \rho R_{p} & M_{p} \end{bmatrix} \begin{pmatrix} \ddot{u}\\ \ddot{p}^{e} \end{pmatrix} + \begin{bmatrix} C_{d} & 0\\ 0 & C_{p} \end{bmatrix} \begin{pmatrix} \dot{u}\\ \ddot{p}^{e} \end{pmatrix} + \begin{bmatrix} K_{d} & -R_{p}\\ 0 & K_{p} \end{bmatrix} \begin{pmatrix} u\\ P^{e} \end{pmatrix} = \begin{pmatrix} f\\ 0 \end{pmatrix}$$
(3)

坝体-库水-坝基所需满足以下边界条件: 库水与大气交接面上(不考虑面波效应)

$$P = 0 \tag{4}$$

作者简介:杨军义(1991--),男,河南省柘城人,工程师,硕士,从事水利水电工程结构设计及数值仿真计算工作。

水库库底边界条件

$$\frac{\partial P}{\partial n} = 0 \tag{5}$$

水库尾部放射边界条件

$$\frac{\partial P}{\partial r} = \frac{1}{c}\dot{P} \tag{6}$$

库底吸收边界条件

$$\frac{\partial P}{\partial n} = -A\dot{P} \tag{7}$$

式中:c为库水压缩波速;n为库底法线方向;r为库 尾横断面法线放向;A库底吸收系数,0≤A≤1,A=0 表示全反射,A=1表示全吸收;P为动水压力一阶 导数。

3 有限元模型及计算工况

根据中国大坝学会第一届数值分析基准基准讨 论会主题 A,本次计算分析采用研究以黄登混凝土 重力坝为分析对象。选取 12#挡水坝段进行数值模 拟计算,12#坝段坝顶高程 1625 m,坝基面高程 1422 m,最大坝高 203 m,坝顶宽 16 m,正常蓄水位 1619 m,坝体弹性模量为 25 GPa,密度为 2400 kg/m³,泊 松比为 0.167,坝体材料阻尼比为 5%,水体密度为 1000 kg/m³,水中纵波传播波速为 1440 m/s,坝基岩 体的弹性模量为 15 GPa,密度为 2400 kg/m³,泊松 比为 0.250,不考虑岩体材料阻尼比。

计算研究对象为坝体-地基-库水系统,采用二 维有限元方法分析,坝体采用平面应力单元 PLANE182,设置其KOP3=0,地基采用平面应变单 元 PLANE42,设置其KOP3=2,库水采用二维声学

流体单元 FLUID29。FLUID29 单元拥有两个位移自 由度和一个压力自由度,在 ANSYS 用于模拟库水, 在库水和坝体相互作用的界面上,设置其单元属性 KEYOPT(2)=0,表示分界面处有结构,设置其单元 属性 KEYOPT(2)=1,表示分界面处无结构。流体 与结构的分界面上应通过设置 FSI,将耦合作用面 上的结构和流体压力耦合起来,从而方便模拟库水、 大坝和坝基的耦合特性。坝身、库水和地基的有限 元网格尺寸均为2m,计算模型的库水和地基的模 拟范围的分别为向上游延伸3倍、4倍和五倍的坝 高,地基向下模拟1.0倍的坝高。有限元网格示意 图见图1。

图 1 有限元网格模型

地震荷载采用 KOBE 地震波,考虑水平和垂直 两个方向,对整个模型施加 KOBE 地震波作为输入 的地震波,地震波取前 10 s,具体加速度时称曲线见 图 2。

具体计算工况见表1。

表1 计算工况汇总表

计算工况	坝体	库水	地基	库水与地基模拟范围
工况 1	线弹性	附加质量	无质量	向上游模拟3倍的坝高,向下游及向下模拟1倍的报告
工况 2	线弹性	可压缩	无质量	向上游模拟3倍的坝高,向下游及向下模拟1倍的报告
工况 3	线弹性	可压缩	无质量	向上游模拟4倍的坝高,向下游及向下模拟1倍的报告
工况 4	线弹性	可压缩	无质量	向上游模拟5倍的坝高,向下游及向下模拟1倍的报告

4 各阶模态自振频率结果与分析

结构的自振频率与结构的刚度成正比,与结构 的质量成反比,通过对结构的进行模态分析,提取了 结构的前 10 阶自振频率。从表 2 中可以看出,工况 1(附加质量模型)的 1 阶频率小于工况 2(流固耦合 模型)的 1 阶频率,其他各阶频率,工况 1 的自振频 率均大于工况 2。同时,随着库水与地基模拟尺寸 的增加各阶频率均出现不同程度的减小,其中低阶 频率的减小幅度较小,高阶频率的减小幅度相对 较大。

表 2 各工况自振频率 (单位:Hz)

阶数	工况 1	工况 2	工况 3	工况 4
1	1.15	1.45	1.46	1.46
2	2.77	1.76	1.73	1.72
3	3.96	2.11	1.97	1.89
4	5.05	2.78	2.40	2.19
5	7.99	3.52	2.99	2.62
6	11.18	3.89	3.56	3.12
7	11.29	4.11	3.88	3.59
8	14.00	4.90	4.07	3.87
9	15.33	5.11	4.64	4.05
10	15.71	5.28	5.10	4.48

5 坝顶加速度时称结果与分析

提取各种工况下,上游面坝顶处的加速度时称 如图3所示。由计算结果可知随着地震波加速的增加,坝顶加速度相应也随之相应增大,随着库水和坝 基模拟范围的增加,坝顶加速度会出现不同程度的 减小。

6 坝顶相对位移的计算结果与分析

提取各工况上游面坝顶点和坝踵点的相对位移 时称如图 4 所示,由计算结果可知:流固耦合静力荷 载作用下,坝顶处的位移小于无质量地基坝顶处的 位移,这主要是由于流固耦合作用下,水库库底的水 ·18· 压力作用下,坝基向下变形,使得坝体产生了一下向 上游侧的变形;随着库水和地基上游侧模拟范围的 增加,坝顶的相对位移的最大值有所减小,不过减小 的幅度有限,其他时刻的坝顶位移变化规律不明显。

7 坝踵的动水压力计算结果

附加质量法的动水压力采用《水电工程建工建 筑物抗震设计规范》(NB35047-2015)推荐的公式 计算,及附加质量乘以坝踵处的加速度时称,按照题 目要求再乘以折减系数 0.5。具体各工况下的坝踵 处的动水压力变化过程见图 5。根据计算结果可 知,随着库水和地基模拟范围的增加,坝踵处的动水 压力的最大值随之减小,不过动水压力最大值出现 的时刻不同。

8 结论

(1)采用综合考虑坝体-库水-地基流固耦合 作用下,能够在一定程度上反映地震时坝体的地震 动响应特征。

(2)随着库水和地基上游侧延伸范围的增加, 其模拟的结果会更加精确,不过从计算结果来看,上 游侧延伸3倍的坝高,已经能够满足精度要求。

参考文献

[1] 於文欢,任建民,王晓丽.坝体-库水-地基流固耦合有限元分析的地基模拟[J].水电能源科学,2014,32(12):75-77+25.

- [2] 陈江,张少杰,闵兴鑫.坝体—库水相互作用的流固耦 合分析[J].西南科技大学学报,2009,24(01):13-19.
- [3] 龚亚琦,苏海东,崔建华.坝体与库水的流固耦合分析 [J].长江科学院院报,2011,28(06):63-66.
- [4] 刘浩吾. 混凝土坝动水压力与库水可压缩性效应[J].水利水电科技进展,2002(02):10-13+69.
- [5] 薛松. 基于 ANSYS 的高混凝土重力坝有限元静动力 分析[D].
- [6] 薛松,赵绪新,平源.基于流固耦合法的重力坝抗震 分析[J].建筑工程技术与设计,2018,000(003):267.

(上接第15页)

(2) 控制线路管网水头损失计算

根据《管道输水灌溉工程技术规范》 (GBT20203-2017),管道沿程水头损失,可按以下 公式计算:

$$h_f = f \frac{LQ^m}{D^b} \tag{9}$$

- [7] 范鹏霞. 某混凝土重力坝地震动响应及敏感性研究[D].
- [8] 宋力,周志宇,王怀亮.考虑库水可压缩性的重力坝 地震响应分析[J].水电能源科学,2015,033(003): 50-53.
- [9] 程正龙,石熙冉,何蕴龙.鲁皂水库重力坝地震动力 响应分析[J].水电能源科学,2014.
- [10] 谢开仲,韦良,李海.考虑可压缩库水作用混凝土拱坝 的动力特性和地震反应分析[J].水力发电,2009,35 (05):49-51.

式中:hf-管道沿程水头损失(m);f-摩阻系数,管道 采用塑料管,取 0.948×10⁵;L-管道长度(m);Q-流 量(m³/h);m-流量指数,取 1.77;d-管道内径 (mm);b-管径指数,取 4.77。

依据《管道输水灌溉工程技术规范》(GBT20203-2017),各种管材的f,m、b值,可按表2取用。

表 2 不同管材摩阻系数、流量指数、管径指数值表

管材	类别	管材摩阻系数 f	流量指数 m	管径指数 b	
	n = 0. 013	1.312×10^{6}	2	5.33	
混凝土管	n = 0. 014	1.516×10^{6}	2	5.33	
	n = 0. 015	1.749×10^{6}	2	5.33	
硬塑料管		0.948×10^{5}	1.77	4.77	
钢管、铸铁管		6.25×10^5	1.9	5.1	
球墨铸铁管		$1.899 \times 10^5 \sim 2.232 \times 10^5$	1.852	4.87	
铝合金管		0.861×10^{5}	1.74	4.74	

注:n为糙率系数,局部水头损失按最不利轮灌组沿程水头损失的10%估算

4.2.3 泵站水泵选型

(1)水泵扬程计算

H=H净+ Σ hf,j,式中:H-水泵设计扬程(m); H净-净扬程表示管道系统进出口水位差; Σ hf,j-水泵吸水管进口管道系统进口之间的管道水头损失 (m);

(2)设计流量的确定

1)水泵设计流量

水泵设计流量根据最不利轮灌组需要最大流量 按下式计算:

$$Q = \frac{\alpha MA}{Ttm} \tag{10}$$

式中:Q-设计流量(m³/h);α-控制性的作物种植比 例,取100%;M-设计灌水定额(m³/亩),即46.46 m³/亩;A-设计灌溉面积(亩);t-每天灌水小时数, 取 *t*=13 h;*T*-灌溉周期(d),取 *T*=13 d;η-灌溉水 利用系数,取 0.75。

2)各级管道设计流量

$$Q_{ij} = \frac{n}{n_g} Q_0 \tag{11}$$

式中: *Q_{ij}*-某级管道的设计流量,单位为立方米每小时(m³/h);*n*-管道控制范围内同时开启的给水栓装置个数,单位为(个)。

3)水泵选型

根据管道及离心泵流量、扬程计算结果,结合黄 河下游淤区泵站提水灌溉经验,按照下列原则选取 水泵型号:①选用水泵的流量应满足灌溉设计流量 的要求,且不大于出水量;扬程应根据灌溉系统设计 扬程合理选定。②便于运行调度、维修和管理。 ③按照选用的机组,建设投资和设备功率较小。

· 19 ·